Approximate cone factorizations and lifts of polytopes
نویسندگان
چکیده
In this paper we show how to construct inner and outer convex approximations of a polytope from an approximate cone factorization of its slack matrix. This provides a robust generalization of the famous result of Yannakakis that polyhedral lifts of a polytope are controlled by (exact) nonnegative factorizations of its slack matrix. Our approximations behave well under polarity and have efficient representations using second order cones. We establish a direct relationship between the quality of the factorization and the quality of the approximations, and our results extend to generalized slack matrices that arise from a polytope contained in a polyhedron.
منابع مشابه
Lifts of Convex Sets and Cone Factorizations
In this paper we address the basic geometric question of when a given convex set is the image under a linear map of an affine slice of a given closed convex cone. Such a representation or “lift” of the convex set is especially useful if the cone admits an efficient algorithm for linear optimization over its affine slices. We show that the existence of a lift of a convex set to a cone is equival...
متن کاملILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms
In this paper, an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms. We use different drop tolerance parameters to compute the preconditioners. To study the effect of such a dropping on the quality of the ILU ...
متن کاملEquivariant Semidefinite Lifts of Regular Polygons
Given a polytope P ⊂ R, we say that P has a positive semidefinite lift (psd lift) of size d if one can express P as the linear projection of an affine slice of the positive semidefinite cone S+. If a polytope P has symmetry, we can consider equivariant psd lifts, i.e. those psd lifts that respect the symmetry of P . One of the simplest families of polytopes with interesting symmetries are regul...
متن کاملMaximum semidefinite and linear extension complexity of families of polytopes
We relate the maximum semidefinite and linear extension complexity of a family of polytopes to the cardinality of this family and the minimum pairwise Hausdorff distance of its members. This result directly implies a known lower bound on the maximum semidefinite extension complexity of 0/1-polytopes. We further show how our result can be used to improve on the corresponding bounds known for pol...
متن کاملOn the Existence of 0/1 Polytopes with High Semidefinite Extension Complexity
In Rothvoÿ [2011] it was shown that there exists a 0/1 polytope (a polytope whose vertices are in {0, 1}) such that any higherdimensional polytope projecting to it must have 2 facets, i.e., its linear extension complexity is exponential. The question whether there exists a 0/1 polytope with high PSD extension complexity was left open. We answer this question in the a rmative by showing that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 151 شماره
صفحات -
تاریخ انتشار 2015